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Abstract. Let m >_ 3 and k > 1 be two given integers. A sub-k-coloring of [n] = (1,2,...,n} is 
an assignment of colors to the numbers of [n] in which each color is used at most k times. 
Call an S __q I-n] a rainbow set if no two of its elements have the same color. The sub-k-Ramsey 
number sr(m, k) is defined as the minimum n such that every sub-k-coloring of [n] contains 
a rainbow arithmetic progression of m terms. We prove that I2((k - 1)m2flog ink) < sr(m, k) < 
O((k - 1)m 2 log mk) as m ~ 0% and apply the same method to improve a previously known upper 
bound for a problem concerning mappings from I-n] to I-n] without fixed points. 

1. The Results 

The aim of  this note is to investigate certain Ramsey-type problems for arithmetic 
progressions. Throughout ,  m - A P  abbreviates "arithmetic progression of m terms." 
One of  the best known  results of this kind is Van der Waerden 's  theorem [8], which 
states that  for all natural  numbers  m and k there is an no = no(m, k) such that if 
n ___ no and the set In] = { 1, 2 . . . .  , n} is colored by at most  k colors then it contains 
a monochromat i c  m-AP.  This statement was generalized for sets of  positive upper 
density in the celebrated paper 1-7] of  Szemer6di. A canonical  theorem is also 
available, for details see I-5, p. 59]. 

In this note we consider an addit ional Ramsey function which received a 
considerable amoun t  of  at tention recently. We obtain various estimates for the 
sub-Ramsey numbers  (defined below), and show how our  method  can be applied to 
improve a previous result concerning mappings  from I-n] to [hi  having no fixed 
points. 

Sub-Ramsey Numbers 

A coloring of  [n] is called a sub-k-coloring if each color  is assigned to at most  
k elements. Fo r  given m and k, define the sub-k-Ramsey number sr(m, k) as the 
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minimum integer no = no(m, k) such that if n > no then every sub-k-coloring of [hi 
contains an m-AP with no pair of terms having the same color. Such an arithmetic 
progression will be called a rainbow m-AP. 

For sr(m, k) we have the following general estimates. 

Theorem 1. For every m > 3 and k > 2, 

l ( k -  1)re(m- 1) 
l o g ( k - 1 ) m  - k +  l < s r ( m , k )  

24 
< (1 + o(1))]~(k - 1)(m - 1)21og(k - 1)(m - 1), 

where the factor of 1 + o(I) approaches 1 as m tends to infinity. 

If m is fixed and k grows, one can show that sr(m, k) is linear in k. 

Theorem 2. For fixed m, as k tends to infinity, 

sr(m,k) < (1 + o(1))~m(m - 1)2(k - 1). 

The exact determination of the asymptotic behavior of sr(m, k) seems to be 
difficult. Ifm = 3 (i.e.,for 3-APs), Theorem 2 yields an upper bound of(1 + o(1))6k. 
In this particular Case the following sharper estimate can be proved. 

Theorem 3. As k grows, 2k < sr(3,k) <_ (4.5 + o(1))k. 

We note that sr(m, k) and the so-called sub-Ramsey numbers of complete graphs, 
studied in [2], have a similar behavior. This seems to be an interesting coincidence 
as arithmetic progressions form a very special structure on [n], whose connection 
with general edge-colorings of complete graphs is not clear. 

Mappings 

Motivated by [6] (and, later, by [1]), the second author proved in [3] the 
following result. For every natural number m there is an integer n = n(m) such that 
for every ~0: I-n] ~ [n] without a fixed point there is an m-AP S satisfying ~p(i) ¢ S 
for i ~ S. Moreover, denoting by no(m) the minimum value of n with the above 
property, cl m2/log m < no(m ) <_ m2(log m) 'c2 l°gm)/logl°gm , for some absolute positive 
constants cl and c 2. Our methods here enable us to reduce the exponent of logm 
in the upper bound drastically, as well as to slightly improve the lower bound, as 
follows. 

Theorem 4. For every m, 

m ( m -  1) 48 2 
- -  + 0(1) < sr(m,3)-  1 < no(m) < (1 + o(1))]-~m logm. 
3 log m - - - 

We note that the same lower bounds hold for the numbers no(m ) even if we 
restrict our investigation to one-to-one mappings. This fact follows from the first 
part of the proof of Theorem 4. 
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It would be interesting to obtain an upper bound for no(m) in terms of sr(m, k), 
for some small k. 

2. Proofs 

In the proofs we apply the following well-known extension of the prime number 
theorem (see e.g. [4]). 

Lemma 1. Let  d be a f i x ed  nonnegative integer. For the sum o f  d-th powers o f  primes 
p smaller than x, we have the following asymptotic estimate as x ~ oo: 

xd+l 
E pa__ (1 + o(1))?d 

1)logx" + p < x  

This lemma will be used in the particular cases d = 0, 1 and 2. We shall also 
frequently use the following simple fact. 

Lemma 2. Let  n, m, d be positive integers, n > (m - 1)d. The number o f  arithmetic 
progressions with difference d and with m terms in [n] is equal to n - (m - 1)d. As a 
consequence, the number o f  m-APs in [n] is 

as n/m ~ oo. 

[n/(m-1)l 
E 
i=1 

IF n+°- eli In I o-, (n-i(m-1))= ~ n - ( m - 1 )  2 

1 n 2 

- 2 m - l "  

Proof of Theorem 1 

The Lower bound. Let n be the largest multiple of k which is at most ~m(m - 1)(k - 1)/ 
log m(k - 1). We take a random coloring of In] with n/k colors, each of them 
assigned to precisely k elements. By a "random coloring" we mean that all possible ( n )  

k, k , . . . ,  k such colorings of In] are equally likely. 

It is important to note that a random coloring can be produced by coloring the 
n elements one by one in the following manner. If the i-th color has been assigned 
to kl elements, then we choose an arbitrary element from the remaining n - ~ kl 

ones, and assign to it the color i with probability k - ki n - ~ k~" This is independent of 

the arrangement of previous assignments (and only depends on the multiplicities 
of colors having been assigned so far). 

Put q = n/k, and let S be an arbitrary m-AP. We claim that the probability that 
S is a rainbow m-AP is 

m - 1  

/=1 n / 
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Indeed, put S = {sl . . . .  , sin}, and form the random coloring by starting with the 
elements of S. If the t first elements of S have distinct colors, then the next one 
should be assigned to a (t + 1)-th color, which can be chosen in q - t different ways. 
For those colors, ki = k, while for those that have already been used, ki = k - 1. 
Since the steps are independent, our statement follows. (The original definition of 
a random coloring has nothing to do with the sequential choice of the elements, so 
that the probability of any set being rainbow is the same for every ordering.) 

An elementary computation yields the following upper bound for the above 
probability: 

kin-1 1~ q - i __ 1 
i=1 n i ,=1 n--- i .,I 

m--1 
"( H e-(k-1)i/(n-i) 

i=1  

< e-(k-X)r, tm-1,/Z. < e-3 log,,,k-1)= (m(k - 1)) -3. 

n 2 

By Lemma 2 the number ofm-APs is less than 2(m - 1)" Since expectation is additive, 

the expected number of rainbow m-gPs  is less than ( 7 2 ( k -  1)log2m) -1 < 1, i.e. 
there is a sub-k-coloring of In] that does not contain any rainbow m-AP. 

The Upper bound. Suppose that [n] has a sub-k-coloring that does not contain any 
rainbow m-AP. Denote by C~ . . . . .  Cq the color classes, where q is the number of 
colors, and assume that n = s r ( m , k ) -  1. By our lower bound, n > f2(m2/logm). 
Hence, there is a function f (n) with the following properties: m/f  (n)= o(1) as 
m ~ m, and f (n) < n 2/3. 

Let us call an m-AP a sparse sequence if its difference p is a prime such that 

n n 

f (n) <- p < --'m - -1  

We claim that any two elements i, j e [n] can belong to at most 2(m - 1) 
sparse sequences. Indeed, for any fixed p, i and j can belong to at most m -  1 
m-APs of difference p. Moreover, the differences in sparse sequences are primes. 
Hence, if pt, P2 . . . .  are the differences of those sparse sequences containing i 
and j, then j - i should be a multiple of the product of those differences. Since 
]i - Jl < n and f(n) < n 1/3, we obtain that the number of distinct differences is at 

most 2. 
By the definition of sub-k-colorings, each color class C~ has cardinality at most 

k. Thus, the number of monochromatic pairs is 

I ,I < : ( k -  1). 
i=  1 - -  k = 

Applying the previous observation, we obtain that the number of non-rainbow 
sparse sequences is at most 

n ( k -  1 ) ( m -  1). 

Observe further that in this computation some sparse sequences have been counted 
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n 1), then the number of sparse more than once: If p > (1 < t < m -  
- t + m - 1  - - 

sequences with difference p that contain a given pair of elements is at most 
t + m - 2, instead of 2(m - 1). Introducing the weight function 

i m- -  1 for n < P <  t + m - - 2  t + m - 1 -  
w(S)  = 

n n 

for f ~ < P < 2 ( m - 1 )  

n 
l < t < _ m - 1  

t + m - 2 '  

for sparse sequences S (where p is the difference of S), we obtain that 

n(k - 1)(m - 1)_> E w(S). 
S 

In order to estimate the right-hand-side, we use Lemmas 1 and 2. We divide the 
sum into two terms 2," 1 and Z z. The first one contains those S with w(S) = 1, i.e., 
sparse sequences with difference less that ½n/(m - 1). For this sum we obtain 

Za = Z (n - p(m - 1 ) )  .= n Z l - (m - 1 )  Z p 

= (1 +o(1)) 

- ( m -  1) 

p 

n 2 ( m -  1) 
n 

l o g ~  

,2(,-- 
n 

' 2 1 ° g 2 ( m -  1) t. 

1 3 n 2 
--(1 + o( ))~ 

by the assumption m/f(n) = o(1). 

n 

(m - 1)log m ~ 1 

t7 L 

n 

1 o g f ~ J  

log j 

When estimating Z'2, we observe that each sequence S with difference p has 
weight w(S) > 2p(m - 1)/n. Since there are n - p(m - 1) m-APs with difference p, 
we obtain 

S2 > 2 2p(m - 1 ) ( n -  p(m - 1)) 
p n 

2 ( m -  1) z p2 
= 2 ( m -  1) E P Z 

p F/ p 

_-(1+o(1), 
21og~-n__ 2 n 

(. 1 l°g2(m - 1) 
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Thus, 

I 1"/ 3 n 3 
2 ( m - 1 )  2 (m--s~- 1)  ( 2 ( m -  1)) 

n 
n 3 log m n 1 3 log 2(m - 

-~ (1 + o(1))~ n2 
n 

( m -  1 ) l o g - -  
m - 1  

2/( n) n(k-  1 ) ( m -  1) > (1 + o ( 1 ) ) ~ n  ( m -  1)log 
- m - 1  ' 

implying the upper bound for n. []  

Proof of Theorem 2. For any i ~ j, fixing the i-th and j-th elements of an m-AP, 
all of its m elements are uniquely determined. Thus, each pair i, j ~ [n] is contained 

in at most ( 2 )  m-APs. If there is a sub-k-coloring without any rainbow m-AP in 

In], then denoting by Ci, . . . ,  Cq the color classes, Lemma 2 implies 

(1 + o(1))~2(m 1~ --- ~ ] '[ < 
- i = 1  - 2 k 2  

= ~nm(m- 1 ) ( k -  1), 

which gives the required upper bound for n (as n gets large with k). [] 

Proof of Theorem 3. The lower bound is trivial, since [2k] has a sub-k-coloring 
with just two colors which, of course, cannot contain any rainbow 3-AP. 

To prove the upper bound we assume that n = (4 + x)k, where ½ < x < 1. Given 
a sub-k-coloring of [m], it suffices to show that, if k is sufficiently large, there must 
be a rainbow 3-AP. Let us call a 3-AP odd if its difference is odd. In the proof we 
consider only odd 3-APs. One can easily check that there are [n2/8] such APs. We 
call a pair of distinct numbers i, j ~ [n] an odd pair if i and j have the same color 
and there is at least one odd 3-AP containing both. An odd pair {i, j} is called heavy 
if there are two odd 3-APs containing i and j. Note that if i, j have the same color 
and i - j -= 0 ( s o d  4) then {i, j} is not an odd pair, whereas if i - j -= 2 ( s o d  4) 
then {i, j} is an odd pair which is not heavy. In case i - j -- 1 or 3 ( s o d  4), then {i, j} 
is odd and may be heavy. However, it is not heavy if 2i < j or if 2i - j > n. 

Suppose, now, that we have te elements of color t'. Consider the graph whose 
vertices are these elements and whose edges are all the odd pairs of color •. Clearly 
this graph is 4-colorable, since its vertices can be partitioned according to their 
residues modulo 4 to form a proper vertex coloring. Thus, this graph has at most 
3 2 gtt edges. Since the maximum of the quantity ~ t] subject to the constraints 
0 _< te < k and ~ tt = (4 + x)k, where ½ < x < 1 is attained when tl = t2 = t3 = 
t 4 = k and t 5 = xk, we obtain the following: 
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Fact 1. The total number of odd pairs does not exceed ~(4k 2 + x2k2). 
We now estimate the number of heavy pairs. Clearly, for each i there are at most 

[i/2] numbers j > i such that {i,j} is heavy, since for each such pair 2i _> j > i and 
j ~ i(mod 2). Similarly, for each/ there  are at most [(n - 0/2] numbers j < i such 
that {i, j} is heavy. It follows that the total number of heavy pairs containing either 

an element in (1,2,...,[k/2]) or an element in (n - [k/2] + 1 , n -  I ~ l  + 2 , . . . ,n  ) 

/ Fr'-lt,-~'l'-IN 19 
does no t  exceed 4 ( 1  , - I - 2 - , t - 3 - t - * ' ' - I - / ~ / )  m~ ( 1 - I - o ( 1 ) ) ~  - . I t  remains to 

\ L - - , j /  U 
estimate the number of heavy pairs contained in the interval of the middle (3 + x)k 
elements of In]. The graph whose vertices are the numbers colored d among these, 
and whose edges are the heavy pairs, is bipartite. Hence, if it has t t vertices then it 
has at most t~/4 edges. It thus follows, as before, that the total number of heavy 
pairs contained in the middle interval does not exceed ¼(3k 2 + x2k2). We have thus 
proved: 

Fact 2. The total number of heavy pairs does not exceed 

(3k 2 + x2k 2) + (1 + o ( 1 ) ) ~  = (1 + o(1))k 2 ÷ . 

Combining Facts 1 and 2 we conclude that the total number of odd 3-APs 
containing at least one odd pair does not exceed the number of odd, unheavy pairs 
plus twice that of the heavy pairs, which is at most 

(4k 2 + x 2 k 2 ) + ( l + o ( 1 ) ) k  2 +-~- = ( l + o ( 1 ) ) k 2 t ~ + ~ ) .  

For ½ < x < 1, (and for all sufficiently large k), this number is strictly smaller than 
n 2 + x)2k 2 

the total number of odd 3-APs, which is (1 + o(1))~-= (1 + o(1)) (4 8 

Hence, there is at least one rainbow odd 3-AP, completing the proof. [] 

Remark. The constant 4.5 in the last theorem can be somewhat reduced by a more 
careful analysis. Since this is rather tedious and we suspect that the truth is, in fact, 
much closer to the trivial lower bound, we omit the details of this improvement. 

Proof of Theorem 4. We first prove that no(m ) > sr(m, 3) - 1. Take a sub-3-coloring 
of [n] without any rainbow m-AP, for n = sr(m, 3) - 1, and suppose that the 
number of colors is as small as possible. The latter assumption implies that all but 
at most one of the colors occur at least twice, otherwise two colors occurring once 
might be identified, without producing any new rainbow m-AP. Moreover, if there 
is a one-element color class, then all the other colors occur three times, for the same 
reason. 

If the coloring contains no one-element class, then we stay with [n], otherwise 
delete the n-th element which either was the single class or its deletion yields a class 
of cardinality 2, and then we identify this color with the one which occurs once. In 
either case, we obtain a coloring of at least n - 1 elements without any rainbow 
m-AP, such that each color occurs twice or three times. 
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If  {i, j} is a two-element  color  class, then define tp(i) = j and tp(j) = i. If  {i, j, k} 
is a three-element class, then put  ~o(i) = j, tp(j) = k, tp(k) = i. One  can easily check 
that  the m-APs  covered by m o n o c h r o m a t i c  pairs {i, j} are precisely those m-APs  
which are covered by the pairs {i, tp(i)}. I t  is also clear that  tp has no fixed points. 

In order  to obta in  the upper  bound,  we refer to the p roof  of  Theo rem 1. In case 
of mappings  I-n] ~ [n], we can have at most  n pairs {i, ~p(i)} which should cover  
all sparse sequences S and, as we have seen, each of  those pairs can cover  at  mos t  
2(m - 1)of them. Thus,  2(m - 1)n > E w(S), so that  precisely the same upper  bound  
can be deduced as the one we have obta ined  for st(m, 3). [ ]  
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